» » » Сверхэффективный транзистор для машинного обучения сократил потребление энергии ИИ на 99%

Сверхэффективный транзистор для машинного обучения сократил потребление энергии ИИ на 99%

Фото: DALLE 3

Машинное обучение систем ИИ использует столько вычислительной мощности и энергии, что обычно оно выполняется в облаке. Но новый микротранзистор, в 100 раз более эффективный, чем современные аналоги, обещает сделать этот процесс проще и быстрее, пишет Techinsider.

Исследователи из Северо-Западного университета представили свое новое наноэлектронное устройство в статье, опубликованной в журнале Nature Electronics. Он предназначен для выполнения задачи классификации, то есть анализа больших объемов данных и выборки значимых для обучения элементов, которая является основой многих систем машинного обучения.

«Сегодня большинство датчиков собирают данные, а затем отправляют их в облако, где анализ происходит на энергозатратных серверах, прежде чем результаты окончательно отправляются обратно пользователю, — сказал Марк С. Херсам из Northwestern, старший автор исследования. — Этот подход невероятно дорог, потребляет значительное количество энергии и времени. Наше устройство настолько энергоэффективно, что его можно использовать непосредственно в носимой электронике для обнаружения в режиме реального времени и обработки данных, что позволяет, например, более оперативно реагировать на ЧП в области здравоохранения».

Там, где существующие транзисторы, как правило, изготавливаются из кремния, эти новые построены из двумерных листов дисульфида молибдена и одномерных углеродных нанотрубок. Их конструкция позволяет быстро настраивать и перенастраивать их «на лету», поэтому их можно использовать на нескольких этапах цепочки обработки данных, где традиционные транзисторы способны работать лишь в одной цепочке.

Источник фото: Северо-Западный университет

«Интеграция двух разнородных материалов в одно устройство позволяет нам сильно модулировать ток с помощью приложенных напряжений, обеспечивая динамическую реконфигурацию, — объясняет Херсам. — Высокая степень настройки в одном устройстве позволяет нам выполнять сложные алгоритмы классификации с небольшими габаритами и низким энергопотреблением».

В ходе тестирования эти крошечные гетеропереходные транзисторы со смешанным ядром были обучены анализировать общедоступные наборы данных ЭКГ и маркировать шесть различных типов сердцебиений: нормальное, преждевременное сердцебиение предсердий, преждевременное сокращение желудочков, учащенное сердцебиение, сердцебиение левой ножки пучка и сердцебиение правой ножки пучка.

На 10 000 образцах ЭКГ исследователи смогли правильно классифицировать аномальные сердцебиения с точностью 95%, используя всего два из этих микротранзисторов, тогда как нынешний подход к машинному обучению потребовал бы более 100 традиционных транзисторов, а они потребляли около 1% энергии.

Что это значит? Что ж, это означает, что, как только эта технология поступит в производство – а о том, когда это может произойти, ничего не говорится, — маленькие, легкие мобильные устройства с питанием от батарей получат интеллект для запуска ИИ с машинным обучением по данным собственных датчиков. Это будет означать, что они будут находить результаты быстрее, чем если бы им приходилось отправлять фрагменты данных в облако для анализа, а также означает, что личные данные, которые они собирают о вас, останутся локальными, приватными и безопасными.

Неясно, будет ли это устройство полезно исключительно для портативных устройств, сможет ли оно обрабатывать видеоданные, или эта работа может быть перенесена на более крупное оборудование для машинного обучения и ИИ. Например, стократное снижение потребления электроэнергии стало бы огромным шагом вперед в обучении больших моделей.



ДРУГИЕ НОВОСТИ

Комментарии

Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.
САМОЕ ЧИТАЕМОЕ / КОММЕНТИРУЕМОЕ
  1. Букет из 101 розы: что означает и когда принято дарить?
  2. Audi Q6 e-tron обзавелся новой версией performance
  3. Microsoft назвала преимущества Windows 11
  4. Особенности фирменных ноутбуков Asus
  5. Физики создали самую тонкую линзу в мире: всего три атома в толщину
  6. Nvidia официально разрешила разгонять свои видеокарты
  7. Китайский модуль «Чанъэ-6» отправил на Землю образцы обратной стороны Луны
  8. Физики придумали, как заглянуть внутрь и рассмотреть строение кристаллов
  9. Решена загадка длинных шей жирафов
  10. АвтоВАЗ показал новую модель — седан Lada Iskra
Как работать на себя с 2023 года? Вот что рассказали в МНС
Как работать на себя с 2023 года? Вот что рассказали в МНС
В Министерстве по налогам и сборам сообщили, что сейчас готовится проект постановления правительства и там будет определен Читать далее
В каких случаях водитель должен брать с собой медсправку?
В каких случаях водитель должен брать с собой медсправку?
Новшества касаются в том числе и перечня документов, которые обязан возить с собой водитель. Читать далее
Все новости
Галерея